请输入搜索信息:
 首页  学院概况  师资队伍  本科生教育  研究生教育  科学研究  学生工作  招生就业  党群与思政  社会服务  校友天地 

孙旭平

2024年04月12日 11:16  点击:[]

         孙旭平个人简历

(邮箱:xpsun@uestc.edu.cn; 电话/微信:17716153137)


 


学习经历

1993.09-1997.06: 西华师范大学 学士

2000.09-2005.12: 中国科学院长春应用化学研究所         博士  (导师:  汪尔康院士)


工作经历

1997.07-2009.12:  西华师范大学 助教、副教授、教授

2006.04-2007.05: 德国康斯坦茨大学 博士后、洪堡学者

2007.06-2008.05: 加拿大多伦多大学 博士后

2008.06-2009.07: 美国普渡大学 博士后

2010.01-2015.10: 中国科学院长春应用化学研究所 研究员、博导

2015.11-2018.01:   四川大学 教授、博导

2018.02-至今:         电子科技大学 教授、博导


获奖及荣誉称号

中科院院长优秀奖

中科院优秀博士学位论文

全国优秀博士学位论文

中科院优秀导师奖

吉林省高层次创新创业人才

长春市首批青年科技英才

四川省千人计划创新领军人才

四川省学术和技术带头人

英国皇家化学会高被引作者

化学领域中国高被引学者

材料科学领域中国高被引学者

化学和材料科学领域全球高被引科学家

全球前2%顶尖科学家

英国皇家化学会会士


学术兼职  

Nano Research Energy副主编

Materials Express副主编

Chinese Chemical Letters编委

Carbon Neutralization编委

Molecules编委

中国材料研究学会纳米材料与器件分会理事


研究兴趣

纳米功能材料设计、结构调控及其催化和疾病诊断与治疗应用


学术成就

1)建立基于荧光共振能量转移原理的均相核酸检测新体系;2)提出杂原子掺杂荧光碳点水热合成新方法及金属离子荧光检测新技术;3)率先提出保形磷化策略制备过渡金属磷化物纳米结构及三维纳米阵列,解决了无表面活性剂金属磷化物可控制备的世界难题;4)发展过渡金属磷化物高效电解水催化新体系;5)开创无定形纳米阵列电化学保形制备及电催化应用新方向;6)建立高效电化学合成氨催化新体系。已在Nat. Synt., Nat. Commun., J. Am. Chem. Soc., Angew. Chem., Adv. Mater., Adv. Energy Mater., Nano Lett., Nucleic Acids Res., Anal. Chem.等刊物发表研究论文700篇(其中自然指数期刊论文121篇),单篇引用大于1000次论文4篇、大于200次论文86篇、大于100次论文220篇,单篇最高引用2111, ESI 数据库高被引论文216篇,ESI数据库热点论文98篇,中国百篇最具影响国际学术论文3篇;论文总引7.4万余次, H 指数143


代表性论文

  1. K. Dong, Y. Yao, H. Li, H. Li, S. Sun, X. He, Y. Wang, Y. Luo, D. Zheng, Q. Liu, Q. Li*, D. Ma*, X. Sun*, B. Tang*, H2O2-mediated electrosynthesis of nitrate from air. Nat. Synt. 2024, DOI:

  2. J. Liang, Z. Cai, Z. Li, Y. Yao, Y. Luo, S. Sun, D. Zheng, Q. Liu, X. Sun*, B. Tang*, Efficient bubble/precipitate traffic enables ultrastable seawater reduction electrocatalysis at industrial-level current densities. Nat. Commun. 2024, DOI:

  3. M. A. Mushtaq, A. Kumar, W. Liu, Q. Ji, Y. Deng, G. Yasin, A. Saad, W. Raza, J. Zhao, S. Ajmal, Y. Wu, M. Ahmad, N. R. Lashari, Y. Wang, T. Li, S. Sun, D. Zheng, Y. Luo, X. Cai*, X. Sun*, A metal coordination number determined catalytic performance in manganese borides for ambient electrolysis of nitrogen to ammonia. Adv. Mater. 2024, DOI: 10.1002/adma.202313086

  4. H. Zhang, H. Wang, X. Cao, M. Chen, Y. Liu, X. Zhao*, M. Huang, L. Xia, Y. Wang, T. Li, D. Zheng, Y. Luo, S. Sun, Y. Zhou*, X. Sun*, Unveiling cutting-edge developments in electrocatalytic nitrate-to-ammonia conversion. Adv. Mater. 2024, DOI: 10.1002/adma.202312746

  5. W. Zhao, X. Ma, L. Gao, X. Wang*, Y. Luo, Y. Wang, T. Li, B. Ying, D. Zheng, S. Sun, Q. Liu, Y. Zheng, X. Sun*, W. Feng*, Hierarchical architecture engineering of branch-leaf-shaped cobalt phosphosulfide quantum dots: enabling multi-dimensional ion-transport channels for high-efficiency sodium storage. Adv. Mater. 2024, 36(4), 2305190

  6. Z. Li, Y. Yao, S. Sun, J. Liang, S. Hong, H. Zhang, C. Yang, X. Zhang, Z. Cai, J. Li, Y. Ren, Y. Luo, D. Zheng, X. He, Q. Liu, Y. Wang*, F. Gong*, X. Sun*, B. Tang*, Carbon oxyanion self-transformation on NiFe oxalates enables long-term ampere-level current density seawater oxidation. Angew. Chem. Int. Ed. 2024, 1, e202316522

  7. J. Liang, Z. Li, L. Zhang, X. He, Y. Luo, D. Zheng, Y. Wang, T. Li, H. Yan, B. Ying, S. Sun, Q. Liu, M. S. Hamdy, B. Tang*, X. Sun*, Advances in ammonia electrosynthesis from ambient nitrate/nitrite reduction. Chem 2023, 9, 17681827

  8. J. Liang, Z. Li, X. He, Y. Luo, D. Zheng, Y. Wang, T. Li, B. Ying, S. Sun, Z. Cai, Q. Liu, B. Tang*, X. Sun*, Electrocatalytic seawater splitting: nice designs, advanced strategies, challenges and perspectives. Mater. Today 2023, 69, 193-235

  9. J. Liang, P. Liu, Q. Li, T. Li, L. Yue, Y. Luo, Q. Liu, N. Li, B. Tang*, A. A. Alshehri, I. Shakir, P. O. Agboola, C. Sun*, X. Sun*, Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem. Int. Ed. 2022, 61(18), e202202087.

  10. L. Zhang, J. Liang, Y. Wang, T. Mou, Y. Lin, L. Yue, T. Li, Q. Liu, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, X. Guo*, D. Ma*, X. Sun*, High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem. Int. Ed. 2021, 60(48), 25263-25268.

  11. K. Dong, J. Liang, Y. Wang, Z. Xu, Q. Liu, Y. Luo, T. Li, L. Li, X. Shi, A. M. Asiri, Q. Li*, D. Ma*, X. Sun*, Honeycomb carbon nanofibers: a superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem. Int. Ed. 2021, 60(19), 10583-10587.

  12. H. Bao, Y. Qiu, X. Peng, J. Wang, Y. Mi, S. Zhao, X. Liu*, Y. Liu, R. Cao*, L. Zhuo, J. Ren, J. Sun, J. Luo, X. Sun*, Isolated Cu single sites for high-performance electroreduction of CO to multicarbon products. Nat. Commun. 2021, 12, 238.

  13. R. Zhao, P. Ding, P. Wei, L. Zhang, Q. Liu, Y. Luo, T. Li, S. Lu, X. Shi, S. Gao, A. M. Asiri, Z. Wang*, X. Sun*, Recent progress in electrocatalytic methanation of CO2 at ambient conditions. Adv. Funct. Mater. 2021, 312009449.

  14. Y. Wu, H. Zhao, Z. Wu, L. Yue, J. Liang, Q. Liu, Y. Luo, S. Gao, S. Lu, G. Chen, X. Shi, B. Zhong, X. Guo*, X. Sun*, Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Mater. 2021, 34, 483-507.

  15. T. Wu, H. Zhao, X. Zhu, Z. Xing,Q. Liu, T. Liu, S. Gao, S. Lu, G. Chen, A. M. Asiri, Y. Zhang,* X. Sun*, Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticle modulated by mixed-valent copper. Adv. Mater. 2020, 32(30), 2000299.

  16. L. Ji, L. Li, X. Ji, Y. Zhang, S. Mou, T. Wu, Q. Liu, B. Li, X. Zhu, Y. Luo, X. Shi, A. M. Asiri, X. Sun*, Highly selective electrochemical reduction of CO2 to alcohols on FeP nanoarray. Angew. Chem. Int. Ed. 2020, 59(2), 758-762.

  17. T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang, X. Sun*, Greatly improving electrochemical N2 reduction over TiO2 nanoparticle by Fe doping. Angew. Chem. Int. Ed. 2019, 58(51), 18449-18453.

  18. S. Mou, T. Wu, J. Xie, Y. Zhang, L. Ji, H. Huang, T. Wang, Y. Luo, X. Xiong*, B. Tang*, X. Sun*, Boron phosphide nanoparticles: a non-metal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv. Mater. 2019, 31(36), 1903499.

  19. X. Ren, J. Zhao, Q. Wei, Y. Ma, H. Guo, Q. Liu, Y. Wang, G. Cui, A. M. Asiri, B. Li, B. Tang*, X. Sun*, High-performance N2-to-NH3 conversion electrocatalyzed by Mo2C nanorod. ACS Central Sci. 2019, 5(1), 116-121.

  20. X. Zhang, T. Wu, H. Wang, R. Zhao, H. Chen, T. Wang, P. Wei, Y. Luo*, Y. Zhang, X. Sun*, Boron nanosheet: an elemental 2D material for ambient electrocatalytic N2-to-NH3 fixation in neutral media. ACS Catal. 2019, 9(5), 4609-4615.

  21. L. Ji, L. Chang, Y. Zhang, S. Mou, T. Wang, Y. Luo*, Z. Wang, X. Sun*, Electrocatalytic CO2 reduction to alcohols with high selectivity over a two-dimensional Fe2P2S6 nanosheet. ACS Catal. 2019, 9(11), 9721-9725.

  22. Z. Wang, F. Gong, L. Zhang, R. Wang, L. Ji, Q. Liu, Y. Luo, H. Guo, Y. Li, P. Gao, X. Shi, B. Li, B. Tang*, X. Sun*, Electrocatalytic hydrogenation of N2 to NH3 by MnO: experimental and theoretical investigations. Adv. Sci. 2019, 6, 1801182.

  23. W. Qiu, X. Xie, J. Qiu, W. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A. M. Asiri, G. Cui*, B. Tang*, X. Sun*, High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.

  24. L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen*, B. Tang* X. Sun* Electrochemical ammonia synthesis via nitrogen reduction reaction on MoS2 catalyst: theoretical and experimental studies. Adv. Mater. 2018, 30(28), 1800191.

  25. D. Wu, Y. Wei, X. Ren, X. Ji, Y. Liu, X. Guo, Z. Liu, A. M. Asiri, Q. Wei*, X. Sun*, Co(OH)2 nanoparticles-encapsulating conductive nanowires array: room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis. Adv. Mater. 2018, 30(9), 1705366.

  26. X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri, L. Chen*, B. Tang*, X. Sun*, Boosted electrocatalytic N2 reduction to NH3 by defect-rich MoS2 nanoflower. Adv. Energy Mater. 2018, 8(30), 1801357.

  27. Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren, D. Yang, L. Zhang*, X. Sun*, Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8(3), 2236-2241.

  28. Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen*, T. Li*, X. Sun*, High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres at ambient conditions. ACS Catal. 2018, 8(9), 85408544.

  29. J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao*, Y. Xu*, X. Sun*, Ambient N2 fixation to NH3 at ambient conditions: using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy 2018, 52, 264–270.

  30. C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri, X. Sun*, Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater.  2017, 29(2), 1602441.

  31. L. Xie, R. Zhang, L. Cui, D. Liu, S. Hao, Y. Ma, G. Du, A. M. Asiri, X. Sun*, High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew. Chem. Int. Ed. 2017, 56(4), 1064-1068.

  32. C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A. M. Asiri, X. Sun*, Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem. Int. Ed. 2017, 56(3), 842-846.

  33. T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A. M. Asiri, L.  Chen*, X. Sun*, Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with Zn as a promoter. Adv. Energy Mater. 2017, 7(15), 1700020.

  34. T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A. M. Asiri, X. Sun*, L. Chen*, Mn doping of CoP nanosheets array: an efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catal. 2017, 7(1), 98-102.

  35. L. Yang, D. Liu, S. Hao, F. Qu, R. Ge, Y. Ma, G. Du, A. M. Asiri, L. Chen*, X. Sun*, Topotactic conversion of α-Fe2O3 nanowires into FeP as a superior fluorosensor for nucleic acid detection: insights from experiment and theory. Anal. Chem. 2017, 89(4), 2191-2195.

  36. J. Wang, Q. Liu, W. Cui, Z. Xing, A. M. Asiri, X. Sun*, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28(2), 215-230.

  37. C. Tang, L. Gan, R. Zhang, W. Lu, X. Jiang, A. M. Asiri, X. Sun*, J. Wang*, L. Chen*, Ternary FexCo1-xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight. Nano Lett. 2016, 16(10), 6617-6621.

  38. Q. Li, Z. Xing, D. Wang, X. Sun*, X. Yang*, In situ electrochemically activated CoMn-S@NiO/CC nanosheets array for enhanced hydrogen evolution. ACS Catal. 2016, 6(5), 2797-2801.

  39. T. Chen, D. Liu, W. Lu, K. Wang, G. Du, A. M. Asiri, X. Sun*, Three-dimensional Ni2P nanoarray: an efficient catalyst electrode for sensitive and selective nonenzymatic glucose sensing with high specificity. Anal. Chem. 2016, 88(16), 7885-7889.

  40. C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun*, NiSe nanowire film supported on nickel foam:   an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 2015, 54(32), 9351-9355.

  41. J. Tian, N. Cheng, Q. Liu, W. Xing, X. Sun*, Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew. Chem. Int. Ed. 2015, 54(18), 5493-5497.

  42. Z. Xing, Q. Liu, A. M. Asiri, X. Sun*, High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal. 2015, 5(1), 145-149.

  43. W. Cui, Q. Liu, Z. Xing, A. M. Asiri, K. A. Alamry, X. Sun*, MoP nanosheets supported on biomass-derived carbon flake: one-step facile preparation and application as a novel high-active electrocatalyst toward hydrogen evolution reaction. Appl. Catal. B: Environ. 2015, 164, 144-150.

  44. J. Tian, Q. Liu, A. M. Asiri, X. Sun*, Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14. J. Am. Chem. Soc. 2014, 136(21), 7587-7590.

  45. Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri, X. Sun*, Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem. Int. Ed. 2014, 53(26), 6710-6714.

  46. P. Jiang, Q. Liu, Y. Liang, J. Tian, A. M. Asiri, X. Sun*, A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem. Int. Ed. 2014, 53(47), 12855-12859.

  47. J. Tian, Q. Liu, N. Cheng, A. M. Asiri, X Sun*, Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem. Int. Ed. 2014, 53(36), 9577-9581.

  48. Z. Xing, Q. Liu, A. M. Asiri, X. Sun*, Closely interconnected network of molybdenum phosphide nanoparticles: a highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 2014, 26(32), 5702-5707.

  49. Y.  Liang, Q. Liu, A. M. Asiri, X. Sun*, Y. Luo*, Self-supported FeP nanorod arrays: a cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal. 2014, 4(11), 4065-4069.

  50. W. Cui, N. Cheng, Q. Liu, C. Ge, A. M. Asiri, X. Sun*, Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal. 2014, 4(8), 2658-2661.

  51. J.  Tian, Q. Liu, A. M. Asiri, A. O. Al-Youbi, X. Sun*, Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85(11), 5595-5599.

  52. S. Liu, J. Tian, L. Wang, Y. Zhang, X. Qin, Y. Luo, A. M. Asiri, A. O. Al-Youbi, X. Sun*, Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 2012, 24(15), 2037-2041.

  53. W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, A. M. Asiri, A. O. Al-Youbi, X. Sun*, Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal. Chem. 2012, 84(12), 5351-5357.

  54. L. Wang, Y. Zhang, J. Tian, H. Li, X. Sun*, Conjugation polymer nanobelts: a novel fluorescent sensing platform for nucleic acid detection. Nucleic Acids Res. 2011, 39, e37.

  55. X. Sun, S. H. Ko, C. Zhang, A. E. Ribbe, C. Mao*, Surface-mediated DNA self-assembly. J. Am. Chem. Soc. 2009, 131, 13248-13249.

  56. X. Sun, S. Dong*, E. Wang*, Coordination-induced formation of submicrometer-scale, monodisperse, spherical colloids of organic-inorganic hybrid materials at room temperature. J. Am. Chem. Soc. 2005, 127, 13102-3103.

  57. X. Sun, S. Dong*, E. Wang*, Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew. Chem. Int. Ed. 2004, 43(46), 6360-6363.

 

 

关闭

Copyright ◎ 2015 College Of Chemistry Chongqing Normal University. All rights reserved.
学院地址:重庆市大学城重庆师范大学虎溪校区 邮政编码:401331 联系电话:023-65362777 传真:023-65362777
重庆师范大学化学学院保留所有权利!